Copied to
clipboard

G = C42.18C23order 128 = 27

18th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.18C23, C4oD4:7D4, C4:C8:8C22, D4.9(C2xD4), Q8.9(C2xD4), C4:D8:20C2, C4:C4.339D4, C4:SD16:4C2, C2.9(D4oD8), (C4xD4):4C22, (C4xQ8):4C22, (C2xD8):41C22, (C2xC8).20C23, C4.76(C22xD4), D4.2D4:16C2, C4:C4.386C23, (C2xC4).249C24, Q8.D4:16C2, C22:C4.140D4, (C2xQ16):41C22, (C2xD4).55C23, C23.446(C2xD4), (C2xQ8).42C23, C4.170(C4:D4), D4:C4:17C22, C22.29C24:9C2, C2.14(D4oSD16), Q8:C4:19C22, (C2xSD16):74C22, C4:1D4.59C22, C23.36D4:7C2, C22.6(C4:D4), (C22xC4).979C23, (C22xC8).178C22, C42.6C22:7C2, C4.4D4.26C22, C22.509(C22xD4), C23.33C23:7C2, (C22xD4).343C22, (C2xM4(2)).56C22, C42:C2.104C22, (C2xC4oD8):6C2, (C2xC8:C22):17C2, C4.159(C2xC4oD4), (C2xC4).469(C2xD4), C2.67(C2xC4:D4), (C2xD4:C4):29C2, (C2xC4).280(C4oD4), (C2xC4:C4).583C22, (C2xC4oD4).121C22, SmallGroup(128,1777)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C42.18C23
C1C2C4C2xC4C22xC4C2xC4oD4C23.33C23 — C42.18C23
C1C2C2xC4 — C42.18C23
C1C22C42:C2 — C42.18C23
C1C2C2C2xC4 — C42.18C23

Generators and relations for C42.18C23
 G = < a,b,c,d,e | a4=b4=c2=d2=1, e2=a2, ab=ba, cac=a-1, ad=da, eae-1=ab2, cbc=dbd=b-1, be=eb, dcd=bc, ece-1=a2c, de=ed >

Subgroups: 548 in 252 conjugacy classes, 100 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, D4:C4, Q8:C4, C4:C8, C2xC4:C4, C2xC4:C4, C42:C2, C42:C2, C4xD4, C4xD4, C4xQ8, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xD8, C2xSD16, C2xSD16, C2xQ16, C4oD8, C8:C22, C22xD4, C2xC4oD4, C2xD4:C4, C23.36D4, C42.6C22, C4:D8, C4:SD16, D4.2D4, Q8.D4, C23.33C23, C22.29C24, C2xC4oD8, C2xC8:C22, C42.18C23
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C4:D4, C22xD4, C2xC4oD4, C2xC4:D4, D4oD8, D4oSD16, C42.18C23

Smallest permutation representation of C42.18C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 12 16 27)(2 9 13 28)(3 10 14 25)(4 11 15 26)(5 20 22 32)(6 17 23 29)(7 18 24 30)(8 19 21 31)
(1 28)(2 27)(3 26)(4 25)(5 8)(6 7)(9 16)(10 15)(11 14)(12 13)(17 30)(18 29)(19 32)(20 31)(21 22)(23 24)
(1 17)(2 18)(3 19)(4 20)(5 11)(6 12)(7 9)(8 10)(13 30)(14 31)(15 32)(16 29)(21 25)(22 26)(23 27)(24 28)
(1 26 3 28)(2 12 4 10)(5 31 7 29)(6 20 8 18)(9 16 11 14)(13 27 15 25)(17 22 19 24)(21 30 23 32)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,12,16,27)(2,9,13,28)(3,10,14,25)(4,11,15,26)(5,20,22,32)(6,17,23,29)(7,18,24,30)(8,19,21,31), (1,28)(2,27)(3,26)(4,25)(5,8)(6,7)(9,16)(10,15)(11,14)(12,13)(17,30)(18,29)(19,32)(20,31)(21,22)(23,24), (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,9)(8,10)(13,30)(14,31)(15,32)(16,29)(21,25)(22,26)(23,27)(24,28), (1,26,3,28)(2,12,4,10)(5,31,7,29)(6,20,8,18)(9,16,11,14)(13,27,15,25)(17,22,19,24)(21,30,23,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,12,16,27)(2,9,13,28)(3,10,14,25)(4,11,15,26)(5,20,22,32)(6,17,23,29)(7,18,24,30)(8,19,21,31), (1,28)(2,27)(3,26)(4,25)(5,8)(6,7)(9,16)(10,15)(11,14)(12,13)(17,30)(18,29)(19,32)(20,31)(21,22)(23,24), (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,9)(8,10)(13,30)(14,31)(15,32)(16,29)(21,25)(22,26)(23,27)(24,28), (1,26,3,28)(2,12,4,10)(5,31,7,29)(6,20,8,18)(9,16,11,14)(13,27,15,25)(17,22,19,24)(21,30,23,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,12,16,27),(2,9,13,28),(3,10,14,25),(4,11,15,26),(5,20,22,32),(6,17,23,29),(7,18,24,30),(8,19,21,31)], [(1,28),(2,27),(3,26),(4,25),(5,8),(6,7),(9,16),(10,15),(11,14),(12,13),(17,30),(18,29),(19,32),(20,31),(21,22),(23,24)], [(1,17),(2,18),(3,19),(4,20),(5,11),(6,12),(7,9),(8,10),(13,30),(14,31),(15,32),(16,29),(21,25),(22,26),(23,27),(24,28)], [(1,26,3,28),(2,12,4,10),(5,31,7,29),(6,20,8,18),(9,16,11,14),(13,27,15,25),(17,22,19,24),(21,30,23,32)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E···4N4O8A8B8C8D8E8F
order1222222222244444···44888888
size1111224488822224···48444488

32 irreducible representations

dim111111111111222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4C4oD4D4oD8D4oSD16
kernelC42.18C23C2xD4:C4C23.36D4C42.6C22C4:D8C4:SD16D4.2D4Q8.D4C23.33C23C22.29C24C2xC4oD8C2xC8:C22C22:C4C4:C4C4oD4C2xC4C2C2
# reps111122221111224422

Matrix representation of C42.18C23 in GL6(F17)

1380000
040000
001001010
0050010
000121212
001251212
,
1600000
0160000
0011500
0011600
00161016
000110
,
490000
4130000
0000710
0050010
00512512
00012512
,
1150000
0160000
00160150
0000161
000010
000110
,
490000
0130000
0000710
0012070
00012512
00512512

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,8,4,0,0,0,0,0,0,10,5,0,12,0,0,0,0,12,5,0,0,10,0,12,12,0,0,10,10,12,12],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,16,0,0,0,15,16,1,1,0,0,0,0,0,1,0,0,0,0,16,0],[4,4,0,0,0,0,9,13,0,0,0,0,0,0,0,5,5,0,0,0,0,0,12,12,0,0,7,0,5,5,0,0,10,10,12,12],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,15,16,1,1,0,0,0,1,0,0],[4,0,0,0,0,0,9,13,0,0,0,0,0,0,0,12,0,5,0,0,0,0,12,12,0,0,7,7,5,5,0,0,10,0,12,12] >;

C42.18C23 in GAP, Magma, Sage, TeX

C_4^2._{18}C_2^3
% in TeX

G:=Group("C4^2.18C2^3");
// GroupNames label

G:=SmallGroup(128,1777);
// by ID

G=gap.SmallGroup(128,1777);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,1018,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^2=1,e^2=a^2,a*b=b*a,c*a*c=a^-1,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=a^2*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<